exterior$26902$ - перевод на итальянский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

exterior$26902$ - перевод на итальянский

IN DIFFERENTIAL GEOMETRY, A DIFFERENTIAL OPERATION DEFINED IN DIFFERENTIAL FORMS THAT INCREASES THE FORM DEGREE BY 1
Exterior differentiation; Invariant formula for exterior derivative

exterior      
n. esteriore, esterno
exterior angle         
TERM IN GEOMETRY
Interior angle; Interior angles; Exterior angle; External angle; Internal angle; Angle sum of polygon; Angle sum of polygons; ∠ sum of polygons; Internal and external angle; Exterior angles; Turning angle; Turn angle
angolo esterno
interior angles         
TERM IN GEOMETRY
Interior angle; Interior angles; Exterior angle; External angle; Internal angle; Angle sum of polygon; Angle sum of polygons; ∠ sum of polygons; Internal and external angle; Exterior angles; Turning angle; Turn angle
angoli interni

Определение

Exterior Gateway Protocol
(EGP) A protocol which distributes routing information to the routers which connect autonomous systems. The term "gateway" is historical, and "router" is currently the preferred term. There is also a routing protocol called EGP defined in STD 18, RFC 904. See also {Border Gateway Protocol}, Interior Gateway Protocol.

Википедия

Exterior derivative

On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus.

If a differential k-form is thought of as measuring the flux through an infinitesimal k-parallelotope at each point of the manifold, then its exterior derivative can be thought of as measuring the net flux through the boundary of a (k + 1)-parallelotope at each point.